sta*mix*co

Static Mixing Technology For Extrusion and Injection Molding

Presented by

Invotec Solutions Ltd www.invotecsolutions.co.uk

Content

- Introduction
- Static mixer for melt homogenization
 - Working principle, mixing performance of different types of static mixers
 - Pressure drop, power requirement
 - Installation, benefits
- Homogenization of polymer melts regarding uniform distribution of
 - Concentration of colorants, additives
 - Temperature
- Plug-flow behaviour, self cleaning
- Conclusions

Process Requirement for Quality Products?

A perfectly homogeneous melt at the inlet to the die/mold

Reality

- Melt homogeneity often inadequate regarding:
 - distribution of concentration (colorants, additives, blowing agents) colorant streaks, clouds, irregular cell sizes
 - uniformity of temperature distribution viscosity differences e.g. wall thickness variation, distortion, irregular cell sizes

Reasons for Inhomogeneous Melts

The screw has many different functions

it's an "all in one" equipment design calls for compromises to fulfill all functions

- drawing-in of material (granulate, powder)
- compacting the solids
- melting/plasticizing the polymer
- homogenizing the melt (mechanically/thermally)
- discharging the melt
- additional mixing requirements when adding colorants, additives, blowing agent

problem: admixing of small additive ammounts, viscosity difference

Injection molding:

- short screws, reducing active length during plasticizing

Possible Solution to improve the Melt Homogeneity

Static Mixer

installed between Barrel and Gate of Mold / Die

Static Mixers Homogenize Polymer Melts with no Moving Parts

www.stamixco.com

Where are Static Mixers Installed on Injection Molding Machines?

Injection Molding Mixing Nozzle

Where are Static Mixers Installed on Extruders?

Extrusion Melt Blender

Purpose Function of a Static Mixer

- Homogenize the melt just upstream of the mold/die
- Homogenization is the creation of a uniform material which is alike throughout all its parts.
- Critical properties requiring homogenization in extrusion and injection molding are:

Concentration Properties of the Melt Thermal Properties of the Melt

Static Mixers Used for Polymer Processing (1)

Helical Type

Empty Pipe

X-Type

Static Mixers Used for Polymer Processing (2)

Top row:
Bottom row:

ISG Type X-Typ with ring House" Design 3-Blade Pineapple

Empty Pipe XPS

www.stamixco.com

Helical

How Does a Static Mixer Work?

- Flow split into layers which are rearranged and forced to flow in radial direction
- Adjacent mixing elements are offset by 90°
 assures uniform distribution over entire cross section

Mass Homogenization

Temperature Homogenization

Temperature profile after screw

- without mixing device
- downstream of static X-Type mixer (e.g. SMB, SMN)
- A non-uniform temperature leads to local differences in flow velocity

$$\Delta p = f(\nabla \times \eta) \text{ and } \eta = f(T)$$

Critical for

- wall thickness, cooling
- flow in distribution systems for uniform filling of cavities

Quantitative Mixing Performance

Mixing Performance is calculated as follows:

$$S/So = k^{n_{ME}}$$

for StaMixCo Mixers

$$S/So = 0.63^{0.5 \times n}_{ME}$$

How to Calculate Pressure Drop?

Pressure drop:
$$\Delta p = \frac{4}{\pi} NeRe_D \frac{\sqrt{2}}{D^3} \eta \frac{n_{ME}}{2}$$

Viscosity:
$$\eta = f(x, T, polymer(type, grade), p_{op})$$

Shear-rate:
$$\not \approx f(\lor , D_{MF}, geometr)$$

Typical NeRe_D-values:

- Helical Type: NeRe_D ≈250 - 400

- X-Type: NeRe_D \approx 1200 - 2000 (- 3500)

- ISG: NeRe_D ≈9600

Power Consumption by Pressure Drop

 Power consumption compared with dynamic mixers is low. It is calculated as follows:

$$P = \Delta p \times \sqrt{k}$$

• For a pressure drop of 50 bar and a flow rate of 0.3 m³/h polymer, the power consumption is:

$$P = \frac{50 \times 10^5 \times 0.3}{3600} = 417 \text{ W or } \approx 0.4 \text{ kW}$$

Adiabatic Temperature Increase Resulting from Mixer Pressure Drop

 The temperature of the melt increases by the energy dissipated as follows:

$$\Delta T_{\text{adiabatic}} = \frac{\Delta p}{\rho \times c_p}$$

Example:

$$\rho = 800 - 1200 \text{ kg/m}^3 -> \text{average} \approx 1000 \text{ kg/m}^3$$

$$c_p = 1500 - 2500 \text{ J/kg}^\circ\text{C} -> \text{average} \approx 2000 \text{ J/kg}^\circ\text{C}$$

$$\Delta p = 20 \text{ bar} = 2 \times 10^6 \text{ N/m}^2$$

$$\Delta T_{\text{adiabatic}} = \frac{2 \times 10^6}{10^3 \times 2 \times 10^3} = 1^\circ\text{C/20 bar}$$

HowareStaticMixers sized?

Factors influencingthedesignare:

- Factor of improvement of homogeneity needed relative mixer length(L/D) / number of mixingelements
- Maximum allowablepressuredrop flowrate, viscosity (polymer, MFI, T, shear rate of mixer) diameter, lengthof mixer (m),

Most FrequentlyUsedMixers

- Injection moulding
 - X-Type mixers
 - SMN of StaMixCo Technology
 - SMK / SIB of Sulzer Chemtech
 - ISG Type offered by many suppliers
- Extrusion
 - X-Type mixers
 - SMN of StaMixCo Technology
 - SMK / SIB of Sulzer Chemtech
 - Helical mixers offered by several suppliers

Typical Mixer Data

- Mixing efficiency
 - 90 % of the mixers are designed for a homogeneity improvement factor of 5 to 6

X Type mixers (StaMixCo, Sulzer): L/D = 4 - 5 Helical type (Kenics, others): L/D = 9 - 12

- Diameter of mixer $D = f(n_{MF}, d.p.)$
 - Injection:
 - Extrusion:

approx. 0.2 to 0.3 x D screw

approx. $D = 0.5 \text{ to } 1 \text{ x } D_{\text{screw}}$

- Typical pressure drop (for X-Type mixers)
 - Injection: approx. 100 200 bar

10 – 20 bar of hydraulic oil pressure

- Extrusion: approx. 30 – 60 bar

Mass Homogenization When Does a Static Mixer Help?

Streaks in Direction of Flow

 Static Mixer corrects streaks by mixing in radial direction

Streaks Perpendicular to Direction of Flow

- Static Mixers <u>cannot</u> correct streaks perpendicular to flow direction (needs axial mixing)
- Solution
 - Increase dosing rate
 - Increase back pressure

www.stamixco.com

Limitations of Static Mixers

 A Static Mixer is a low shear equipment and thus suitable

for distributive mixing tasks

but <u>not for</u> dispersive mixing duties, e.g. to reduces size of agglomerated solids/ particles

- With Static Mixers most of the polymers can be processed like e.g.
 - Polyolefines (HDPE, LDPE, LLDPE, PP)
 - Styrenics (GPS, HIPS, ABS, SAN, etc.)
 - PET, PA (fibres)
 - others

but <u>not for</u> soft or rigid PVC (burns!)

Mass Homogenization

- Reduce spots, streaks, clouds of color
- Reduce colorant usage
- Maximize use of regrind
- Distribute additives

Colorant Saving Pay-Back Time

Polymer		PS
Polymer price	USD/kg	2.0
Colorant price	USD/kg	30.00
SMN Nozzle cost	USD/kg	2000.00
Part weight	g	300.00
Colorant portion	%	0.50
	g/part	1.50
Part cost	USD/part	0.6420
Cycle time	sec	10.00
Running time of machine	h/day	16.00
	days/week	5.00

Colorant reduction with SMN	%	25.0		
Colorant saving	g/part	0.38		
New part cost	USD/part	0.6315		
Saving/part	USD/part	0.0105		
SMN Mixing Nozzle amortized after:				
- number of cycles needed	cycles	190476		
- number of hours need	hours	529		
- number of days needed	days	33.1		
- number of weeks needed	weeks	6.6		

Temperature Homogenization Injection Molding

Poor Temperature Control

- Polymer melt with large DT
- Asymmetric filling
- Uneven cooling/Part distortion
- Part weight differences
- High reject rates

With Static Mixer

- Polymer melt with low DT
- Symmetrical filling
- Even cooling/No part distortion
- Constant weight
- Greatly reduced reject rates

Temperature Homogenization Extrusion

Large Polymer Melt **DT**

Uneven plate, sheet & film thickness

- Time consuming adjustment of die
- High reject rates during startup

With Static Mixer

Uniform plate, sheet & film thickness

- Die adjustments accomplished in a short time.
- Small reject rate during start-up.

Benefits of Mass and Thermal Homogenization in Injection Molding & Extrusion

Mass Homogenization

- Reduced spots, streaks and clouds of color
- Reduced colorant usage (10-40%)
- Even distribution of additives

Thermal Homogenization

- Narrower part tolerances
- Reduced reject rates
- Less part distortion
- Less part weight variation
- Improved product quality when using regrind. Ability to increase % regrind.
- Shorter cycle times
- Wall thickness and gauge control uniformity
- Foam cell size and distribution uniformity

End User Reasons for Installing Static Mixers

Injection Molding

- 70% of Static Mixer purchases by injection molders is for color homogenization (mass).
- Payback in normally less that 2 months based on more efficient use of colorant.

Extrusion

- 70% of Static Mixer purchases by extruder operators is for thermal homogenization
- Applications are for sheet & film gauge control, foam cell size uniformity & distribution, pipe wall, wire & cable and other thickness related issues.

32

Empty Pipe and Static Mixer Flow Profiles

- Empty Pipe Laminar flowprofile
 large velocity difference accross pipe diamater broad residence time distribution
- Static Mixer Plug flowprofile
 very uniform velocity accross pipe diameter
 narrow residence distribution

Self-Cleaning Empty Pipe

- Laminar flow profile: Flow of streamlines parallel to pipe wall
- At interface between streamlines and boundary layer some drag effect which removes boundary layer material
 - Reduction process is slow
 - Complete removal of the old material
 - = cleaning: requiresa lot of material and long time

Self-Cleaning Static Mixer

- Pipe section at inlet: Laminar flow profile
- Mixer section: Plug flow profile
 - flow lines forced to flow in radial direction
 - streamlines attack bars of mixer grid and pipe wall under an angle boundary layers are removed quickly complete removal of the old material
 - = cleaning: requiresfew material only or a short time
- Pipe section at outlet: Laminar flow profile

Summary about Cleaning

Section	Empty Pipe	Static Mixer	Empty Pipe	Die
Flow profile	laminar flow in axial direction only	like a plug, quite uniform, flow in radial direction	laminar flow in axial direction only	laminar main flow in axial direction
Material volume needed for cleaning	high	small	high	small
Spots of old material	mixed with new material in static mixer, becomes quickly invisible	mixed with new material in static mixer, becomes quickly invisible	not mixed material stays on pipe wall surfaces and slowly breaks off, remains visible	not mixed material stays on pipe wall surfaces like in empty pipe, remains visible

Conclusions

High Efficiency Static Mixers

- are efficient tools to improve melt homogeneity in extrusion and injection molding
- improve product quality at low investment costs
- upgrade performance of older machines
- lower manufacturing costs, e.g. by colorant savings and reduced reject rates
- Have a good performance/cost ratio and usually a short pay-back period, often less than 2 months.